University of Pretoria

First Year Student Academic Risk Profile and the Determinants of Risk Profile: Cluster analysis.

Authors: Dr Juan-Claude Lemmens Mr Moses Mogakolodi Kebalepile Mr Benjamin Tlhale Ntshabele Department for Education Innovation/BIRAP

Department for Education Innovation/BIRAP

www.up.ac.za

Presentation outline

- Background/Introduction
- Aims
- Methodology
- Results
- Discussions
- Conclusions
- Recommendations
- References

Background/Introduction

- Student success as a strategic goal
- UP CARES
 - Measurement of student academic readiness
 - Academic risk clusters
 - Measurement of first-year experience
 - Longitudinal study of student drop-out

Aim

Make data driven decisions that are actionable to improve student success:

- Academic success
- Retention/ persistence
- Learning experience
- Individual development

Methodology

• Study design

The study involved 12542 First Year students at UP in 2014. The data were divided into SET and HUM students. Backward elimination regression analysis on 2013 first year students was used to determine the predictors for success in the second semester. Cluster analysis was then applied to the 2014 cohort based on the same predictor variables that were found statistically significant on the regression analysis in 2013.

Pro	files of surveyed stu	Idents	Frequency	Percentage	
	Ethnicity	Black	5613	44.8%	
		White	5771	46.0%	
		Asian	690	5.5%	
		Coloured	304	2.4%	
		Other	85	0.7%	
		Undisclosed	79	0.6%	
		Total	12542	100.0%	
	Gender	Female	6953	55.4%	
		Male	5589	44.6%	
		Total	12542	100.0%	
	School	HUM	5327	42.5%	
4		SET	7215	57.5%	
V	UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA	Total	12542	100.0%	
	Denkleiers • Leading Minds • Dikgopolo tša Dihlalefi			Department for Education Innova	ation/BIRAF

Methodology

• Statistical techniques

Backward elimination regression analysis

- Enables you to investigate the relationship between the response variable (Y) and several predictor variables (Xs).
- It begins with the full model. Next, the variable that is least significant, given other variables, is removed from the model based on the largest p-value for all independent variables. This process continues until all remaining variables have a p-value < 0.05.
- Variables:
 - Outcome variable
 - Second semester average
 - Predictor variables
 - Ratio Credit Fail credits of modules failed as the ratio of totally credits enrolled for.
 - First semester average.
 - Ratio poor module A ratio calculated using the number of modules failed/discontinued from total number of modules registered for.
 - Grade 12 average.

Methodology cont.: Cluster analysis

- Cluster analysis is a technique of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar to each other than to those in other groups (clusters).
- Purpose of cluster analysis
 - Discover and investigate relationships in order to decide if the data can be presented by small number of clusters of similar objects.
- Two stage sequence of analysis occurs as follows:
 - Ward method was used to determine the number of clusters applying Euclidean Distances as the distance or similar measure. This helps to determine the optimum number of clusters using Cubic clustering criterion plot and pseudo F plot.
 - The next stage is to rerun cluster analysis with our selected number of clusters, which helps to allocate every case in the data to a particular cluster.
- Variables
 - Ratio credit fail

Results: Cluster Analysis

Figure 1 : Plot of CCC vs. NCL

The Cubic Clustering Criterion (CCC) has reached its optimum at 3 and 6 clusters, then it stabilizes.

Results Figure 2 : Plot of CCC vs. NCL

The Pseudo F Statistic also indicates 3 and 6 clusters .

.

Results Figure 3 : Canonical cluster presentation

Results Figure 4 : Mean of clusters

Results Table 2: Frequency distribution of students by faculty and the risk types

Faculty	Frequency	Percent	% At risk	% Border line	% Not at risk	Total
Humanities	1616	12.9	13	26	61	100 📟
Natural Agricultural	2007	10.0	10	26	55	100
Sciences	2201	10.2	19	20	55	
Law	491	3.9	7	17	76	100
Theology	75	0.6	17	33	50	100
Economic	2104	16.9	0	22	60	100
Management	2104	10.0	9	22	09	
Veterinary Sciences	173	1.4	6	6	88	100
Education	1041	8.3	9	31	60	100
Health Sciences	1497	11.9	14	20	66	100
Engineering	3258	26.0	21	32	47	100
Total	12542	100.0				

Results

 Table 3. Academic Risk type by gender// Residence status

Table 3. Academic Risk type by gender & (Residence status by Gender)

Gender Risk type		Frequency	Percent	University residence	Further than 31 km	
Female	Not at risk	4447	64.0			
	At risk	856	12.3	16%	5%	
Border line		1650	23.7			
Total		6953	100.0			
Male	Not at risk	2949	52.8			
	At risk	1005	18.0	10%	4%	
	Border line	1635	29.3			
	Total	5589	100.0			

Results

Table 4. Pearson's correlations by Gender

Females	r	p-value	
Academic risk			
Home language	-0.10	< 0.00	
Ethnic category	0.17	< 0.00	
Distance stayed from campus	-0.11	< 0.00	
Ratio credit failed	-0.95	< 0.00	
Average first semester mark	0.74	< 0.00	
Males	r	p-value	
Academic risk			
Home language	-0.06	< 0.00	
Ethnic category	0.10	< 0.00	
Ethnic category Distance stayed from campus	0.10 -0.08	< 0.00 < 0.00	
Ethnic category Distance stayed from campus Ratio credit failed	0.10 -0.08 -0.94	< 0.00 < 0.00 < 0.00	

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA Denkleiers - Lisading Minds - Dikapopio 15a Dihlalefi

Risk types F statistic p-value Home language 28.3 < 0.001</td> Ethnic category 66.4 < 0.001</td> Distance stayed from campus 17.5 < 0.001</td> Gender 164.3 < 0.001</td>

Results

 Table 5. ANOVA testing differences risk type between groups

Results:

 Table 6:ANOVA with a Bonferroni testing difference in risk types by Home language

Bonferroni Post Hoc test	Mean Difference	p-value
Afrikaans		
English	-0.00681	1.000
Nguni	0.22150	0.000
Sotho	0.15194	0.000
Tshivenda	0.17450	0.002
Xitsonga	0.27003	0.000
Oriental	-0.01070	1.000
European	-0.08282	1.000
Other languages	0.04410	1.000

Results:

 Table 7:ANOVA with a Bonferroni testing difference in risk types by Home language

Bonferroni Post Hoc test	Mean difference	p-value
English		
Afrikaans	0.00681	1.000
Nguni	0.22831	0.000
Sotho	0.15874	0.000
Tshivenda	0.18131	0.001
Xitsonga	0.27684	0.000
Oriental	-0.00389	1.000
European	-0.07601	1.000
Other languages	0.05091	1.000

Bonferroni Post Hoc test Mean difference p-value European 0.08282 Afrikaans 1.000 0.07601 SA English 1.000 0.30432 Nguni 0.000 0.23476 Sotho 0.008 0.25732 Tshivenda 0.020 0.35285 Xitsonga 0.000 0.07212 Oriental 1.000 0.12692 Other languages 1.000

 Table 8:ANOVA with a Bonferroni testing difference in risk types by Home language

Results

 Table 9: ANOVA with a Bonferroni testing difference in risk types by Ethnic group

	Bonferroni Post Hoc test		Mean difference	p- value	
		Black	0.05323	0.707	
	Asian	Coloured	0.04301	1.000	
	Asian	White	-0.16578	0.000	
		Other	-0.05865	1.000	A start and a start
		Asian	-0.05323	0.707	
	Plack	Coloured	-0.01022	1.000	
	DIACK	White	-0.21902	0.000	
		Other	-0.11189	1.000	
		Asian	-0.04301	1.000	
	Coloured	Black	0.01022	1.000	
		White	-0.20880	0.000	
		Other	-0.10166	1.000	
		Asian	0.16578	0.000	
	\//bita	Black	0.21902	0.000	
	vvnite	Coloured	0.20880	0.000	
		Other	0.10713	1.000	
		Asian	0.05865	1.000	
	Others	Black	0.11189	1.000	
	Other	Coloured	0.10166	1.000	
UNIVERSITE UNIVERSIT		White	-0.10713	1.000	
Denkleiers • Leading	Minds • Dikgopolo tša Dihlalefi			Department for Ed	ucation Innovation/BIRAP

Results: Ordinal Regression Model fitting

Table s 10.1; 10.2 & 10.3: Model fitting information; Goodness of fit & Pseudo R-Squared

Model Fitting Information

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	23588.969			
Final	18774.514	4814.454	22	0.000

Goodness-of-Fit

	Chi-Square	df	Sig.
Pearson	22168.297	22618	0.983
Deviance	18771.742	22618	1.000

Pseudo R-Square

Cox and Snell	0.320
Nagelkerke	0.377
McFadden	0.204

Results: Ordinal Regression Model parameters

Table 11: Model Parameter Estimates

							95% CI		TRA
		Estimate	SE	Wald	df	Sig.	LB	UB	
Threshold [Risk_type = Not at risk]		0.004	0.386	0.000	1	0.991	-0.752	0.761	
	[Risk_type = At risk]	0.971	0.386	6.323	1	0.012	0.214	1.728	
Location	Ave_first_Sem	-0.032	0.003	111.347	1	0.000	-0.037	-0.026	
	ratio_cred_fail	0.029	0.001	691.760	1	0.000	0.027	0.031	
	[Distance=More than 31 km]	0.289	0.110	6.866	1	0.009	0.073	0.505	
	[GenCat=.00]	0.124	0.041	9.152	1	0.002	0.044	0.205	

Distance OR: 0.75

Discussion

- More females students than males
 - Agreement with literature (Freeman(2004); Peter, Horn, and Carroll (2005); King, J. E. (2000))
 - University demographics
- More white students than blacks, Asians and coloureds
 - Agreement with University of Pretoria demographics
- Ratio credit failed and First semester averages good academic predictors
- Gender, Distance stayed from campus, Home language and ethnicity
 - Ethnic group & Home language not significant (Hernandez (2007); Kennedy, E., Park, H. (1994)).
 - Gender significant (Freeman(2004) and Peter, Horn, and Carroll (2005))
 - Distance (Naylor (2002); Palmer and Bray (2002); Astin (1973), and Astin (1993); Tang and Wei Tseng (2014); Nicpon (2007); López-Turley (2010)
 - FSA receive cluster analysis data

Conclusion

- Miller (2007) stressed that it is through the prediction of risk of attrition of individual students that institutions can identify the students in need of an intervention and can employ a specific strategy to enhance those students' chances of success.
- Three clusters (At risk; Borderline and Not at risk) were concluded to describe the student risk profiling adequately.
- Ratio credit failed and First semester marks were concluded to be effective academic predictors of second semester achievement for cluster analysis.
- Gender and Distance stayed from campus, especially if it is more than 31 km, were concluded to be crucial factors for further explaining risk profiling of students.
- Although language and ethnicity showed no significance when modelled in a predictor model, the significant correlations established for these covariates leads to the conclusion that, the association of these variables to academic risk profiling cannot be ignored nor taken lightly.

Recommendations

From previous research we know that:

- Students who don't use FSA services are highly at risk.
- Students don't do optional.

From latest research:

 Male students and students residing more than 31 km from UP should be regarded as additional indicators of risk.

References

- Freeman, C. E. (2004). Trends in educational equity of girls and women: 2004 (NCES 2005-016). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.
- Freeman, M. L., Conley, V.M. (May, 2006). Women, transfer, and baccalaureate completion. Paper presented at the Annual Forum for the Association for Institutional Research (AIR), Chicago, Illinois.
- Freeman, M. L., Conley, V. M., and Brooks, G. P. (2006). Successful vertical transitions: What separates community college transfers who earn the baccalaureate from those who don't? Journal of Applied Researched on the Community College, 13(2), 141-150.
- King, J. E. (2000). Gender equity in higher education: Are male students at a disadvantage? Washington, DC: American Center on Education, Center for Policy Analysis.
- Peter, K., Horn, L., and Carroll, C. D. (2005). Gender differences in participation and completion of undergraduate education and how they have changed over time (NCES 2005-169). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.
- Hopkins, T.H. (2008). Early identification of at-risk nursing students: a student support model. J Nurs Educ. 2008 Jun;47(6):254-9.
- Nicpon, M.F., Huser, L., Blanks, E.L., Sollenberger, S., Befort, C., Robinson-Kurpius, R.E. (2007). The Relationship of Loneliness and Social Support with College Freshmen's Academic Performance and Persistence. Journal of College Student Retention: Research, Theory and Practice. 8(3); 345 – 358
- Ruth, N., López-Turley. (2010). College Residence and Academic Performance: Who Benefits From Living on Campus? Education & Educational Research. Urban Education July 2010; 45(4); 506-532
- Astin, A. W. (1993). The effects of dormitory living on students. Educational records, 54, 204-210.
- Astin, A. W. (1993). What matters in college? Four critical years revisited. San Francisco: Jossey-Bass.
- Palmer, S.R., Bray, S.L. (2002). On- and off-campus student persistence and academic performance. Engineering Science & Education Journal, Volume 11, Issue 2, April 2002, p. 66 72
- Kennedy, E., Park, H. (1994). Home language as a predictor of academic achievement: A comparative study of Mexican-and Asian-American youth. The Journal of Research and Development in Education, 27, 188-194.
- Hernandez, C (2007) "Home Language Use and Hispanic Academic Achievement: Evidence from Texas High Schools," Penn McNair Research Journal: Vol. 1: Iss. 1, Article 4.

